
MATH 147: SOLUTIONS TO PRACTICE PROBLEMS FOR EXAM 1

1. For the function f(x, y) = 3x3y2 + 4xy − 7x:

(i) Find the tangent plane to the graph of z = f(x, y) at (1,2).
(ii) Verify that the gradient of F (x, y, z) = z − f(x, y) at (1,2,13) is normal to the plane in (i).

(iii) Find Du⃗f(1, 2) for u⃗ the unit vector in the direction of 3⃗i+ 2⃗j and also in the direction of ∇f(1,2).

Solution. For (i), note that the functions and all of its partial derivatives are continuous, so that the tangent
plane exists at every point on the graph of the function. The equation of the tangent plane is given by z =
fx(1, 2)(x− 1) + fy(1, 2)(y − 2) + f(1, 2) = 37(x− 1) + 16(y − 2) + 13.

For (ii), we have to remember where the equation of a plane comes from. In order for ∇F (1, 2, 13) to be normal to
the tangent plane in (i), we must have ∇F (1, 2, 13) · v⃗ = 0, for every vector v⃗ in the tangent plane. Now, if (x, y, z)

is a typical point in that plane, then (x − 1)⃗i + (y − 2)⃗j + (z − 13)k⃗ represents a typical vector in the plane. Thus,
we want

∇F (1, 2, 13) · {(x− 1)⃗i+ (y − 2)⃗j + (z − 13)k⃗} = 0.

On the other hand, ∇F (1, 2, 13) = −37⃗i− 16⃗j + k⃗. Thus the required dot product is

∇F (1, 2, 13) · {(x− 1)⃗i+ (y − 2)⃗j + (z − 13)k⃗} = (−37⃗i− 16⃗j + k⃗) · {(x− 1)⃗i+ (y − 2)⃗j + (z − 13)k⃗}
= −37(x− 1)− 16(y − 2) + (z − 13)

= 0

using the equation of the tangent plane in (i), which gives what we want. Alternately, the tangent vectors in the x
and y directions determine the plane, so it suffices to show that ∇F (1, 2, 13) is normal to these two vectors, since once

this holds, ∇F (1, 2, 13) will be normal to every vector in the plane. These normal vectors are: i⃗+ fx(1, 2)k⃗ = i⃗+37k⃗

and j⃗ + fy(1, 2)k⃗ = j⃗ + 16k⃗. We then have

∇F (1, 2, 13) · (⃗i+ 37k⃗) = (−37⃗i− 16⃗j + k⃗) · (⃗i+ 37k⃗) = 0.

and

∇F (1, 2, 13) · (⃗j + 16k⃗) = (−37⃗i− 16⃗j + k⃗) · (⃗j + 16k⃗) = 0.

For (iii), ∇f(1, 2) = 37⃗i+ 16⃗j. Thus, for u⃗ = 1√
13
(3⃗i+ 2⃗j),

Du⃗f(1, 2) = (21⃗i+ 16⃗j) · 1√
13

(3⃗i+ 2⃗j) =
95√
13

.

For the directional derivative in the direction of ∇f(1, 2), we have

D∇f(1,2)(1, 2) = (37⃗i+ 16⃗j) · 1√
1625

(37⃗i+ 16⃗j) =
1625√
1625

.

2. Calculate ∂f
∂u

and ∂f
∂v

both by substitution and by using the chain rule for the function f(x, y, z) = xy2z3 with

x = u2 + v, y = 3v + 7, and z = 3u3.

Solution. Originally, I meant for you to calculate the derivatives in two ways and see that the answers agree. But
I did not realize the underlying arithmetic would be so unpleasant. So I will just calculate the derivatives using the
chain rule. We have: fx = y2z3, fy = 2xyz3, fz = 3xy2z2 xu = 2u, xv = 1, yu = 0, yv = 3, zu = 9u2, zv = 0.

∂f

∂u
=

∂f

∂x
· ∂x
∂u

+
∂f

∂y
· ∂y
∂u

+
∂f

∂z
· ∂z
∂u

= y2z3 · 2u+ 2xyz3 · 0 + 3xy2z2 · 9u2

= (3v + 7)2(3u3)3 · 2u+ 3(u2 + v)(3v + 7)2(3u3)2 · 9u2.
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and

∂f

∂v
=

∂f

∂x
· ∂x
∂v

+
∂f

∂y
· ∂y
∂v

+
∂f

∂z
· ∂z
∂v

= y2z3 · 1 + 2xyz3 · 3 + 3xy2z2 · 0

= (3v + 7)2(3u3)3 · 1 + 2(u2 + v)(3v + 7)(3u3)3 · 3.

3. Evaluate the following limits or show they do not exist:

lim
(x,y)→(0,0)

x4 − y4

x4 + x2y2 + y4
lim

(x,y)→(2,1)

x4 cos(πy)

ex+y
lim

(x,y)→(0,0)

|x|
|x|+ |y| lim

(x,y)→(0,0)

x3 + y3

x2 + y2

Solution. For the first limit, if we approach (0,0) along the x-axis, i.e., set y = 0, then we obtain

limx→0
x4

x4 = 1. On the other hand, we easily see the limit is -1 if we approach (0,0) along the y-axis. Thus, the limit
does not exist.

For the second limit, the function is continuous at (2,1), so we may evaluate the limit by substitution, i.e., the limit

is: 24 cos(π)

e3
= −16e−3.

For the third limit, if we approach (0,0) along the x-axis, we get a limiting value of 1, while if we approach (0,0)
along the y-axis, we get 0, so the limit does not exist.

For the last limit, we switch to polar coordinates. The limit then becomes

lim
r→0

r3 cos3(θ) + r3 sin3(θ)

r2 cos2(θ) + r2 sin2(θ)
= lim

r→0
r(cos3(θ) + sin3(θ)) = 0.

4. Consider the function f(x, y) =

{
0 if xy ̸= 0
1 if xy = 0

. Show that f(x, y) is not continuous at (0,0), then show that

∂f
∂x

(0,0) and ∂f
∂y

(0,0) exist. Why does this not contradict the theorem which states that if f(x, y) is differentiable at

(a, b), then f(x, y) is continuous at (a, b)?

Solution. Note that if we approach (0,0) along the x-axis, then xy = 0, so that f(x, 0) = 1, for all x, and hence this
limit is 1. If we approach (0,0) along the line y = x, then xy ̸= 0, so f(x, x) = 0 for all x ̸= 0 and hence the limit
along this path is 0. Thus, the limit at (0,0) does not exist, so f(x, y) is not continuous at (0,0). On the other hand,
∂f
∂x

(0, 0) = limh→0
f(0+h,0)−f(0,0)

h
= limh→0

1−1
h

= 0
h
for all h, so this limit exists and equals 0. Similarly, ∂f

∂y
(0, 0)

exists and equals 0.

Recall that the existence of the partial derivatives at (0,0) does not imply f(x, y) is differentiable at (0,0). To see
this, for the given function, note that the linear function we expect to approximate f(x, y) at (0, 0) is L(x, y) =
fx(0, 0)x+ fy(0, 0)y + 1 = 1. Thus, f(x, y) is differentiable at (0,0) if and only if

lim
(x,y)→0

f(x, y)− L(x, y)√
x2 + y2

= lim
(x,y)→(0,0)

f(x, y)− 1√
x2 + y2

= 0

If we take the limit as (x, y) approaches (0,0) along the line y = x we get limx→0
0−1√
x2+x2

, which does not exist. Thus,

the full limit displayed above does not exist, so f(x, y) is not differentiable at (0,0). The relevant important theorem
from class states that f(x, y) is differentiable at (a, b) if both partials fx(x, y) and fy(x, y) exist and are continuous
at (a, b). You should be able to show that for this problem, neither fx(x, y) nor fy(x, y) are continuous at (0,0).

5. For the function f(x, y) = 3x2 + 7y − 2, use the limit definitions: (a) To verify that f(x, y) is differentiable at
(3,2) and (b) To verify that the first order partials of f(x, y) are continuous at (3,2).

Solution. A straight forward calculation shows that the L(x, y) = 18x+7y−29 is the expected linear approximation
to f(x, y) at (3,2). Thus, f(x, y) − L(x, y) = (3x2 + 7y − 2) − (18x + 7y − 29) = 3x2 − 18x + 27. Thus, f(x, y) is
differentiable at (3,2) if and only if the limit

lim
(x,y)→(3,2)

3x2 − 18x+ 27√
(x− 3)2 + (y − 2)2

equals 0. If we set x = r cos(θ) + 3 and y = r sin(θ) + 2, then the limit above becomes the limit

lim
r→0

3(r cos(θ) + 3)2 − 18(r cos(θ) + 3) + 27√
(r cos(θ) + 3− 3)2 + (r sin(θ) + 2− 2)2

= lim
r→0

3r2 cos(θ)

r
,
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which is clearly 0. Thus, f(x, y) is differentiable at (3,2). The partials fx(x, y) = 6x and fy(x, y) = 7 are certainly
continuous at every point in R2, and hence in particular at (3,2). The limit definitions are easy to check.

6. Use the limit definition to calculate the directional derivative of of f(x, y) = 2x2y − 3x at (4,3) in the direct of

the vector i⃗+ j⃗. Verify your answer by dotting the gradient vector with an appropriate direction vector.

Solution. The unit vector in the given direction is u⃗ = 1√
2
i⃗+ 1√

2
j⃗. Thus, Du⃗(4, 3) can be calculated as

lim
h→0

f(4 + h√
2
, 3 + h√

2
)− f(4, 3)

h
= lim

h→0

2(4 + h√
2
)2(3 + h√

2
)− 3(4 + h√

2
)− 84

h

= lim
h→0

77 h√
2
+ 22 h2

√
2
+ h3

√
2

h

= lim
h→0

77√
2
+ 22

h√
2
+

h2

√
2
=

77√
2
.

On the other hand, ∇f(4, 3) = 45⃗i+ 32⃗j, so Du⃗f(4, 3) = (45⃗i+ 32⃗j) · ( 1√
2
i⃗+ 1√

2
j⃗) = 77√

2
, as required.

7. For the function f(x, y) =

{
x3

x2+y2 , if (x, y) = (0, 0)

0, if (x, y) = (0, 0)
, show that Du⃗f(0, 0) exists for all directions u⃗, but f(x, y)

is not differentiable at (0, 0). Find formulas for fx(x, y), fy(x, y), Du⃗f(x, y), for u = i⃗+ j⃗.

Solution. Let u⃗ = u1⃗i+ u2j⃗ be an arbitrary unit vector. Then,

Dfu⃗(0, 0) = lim
h→0

f(0 + hu1, 0 + hu2)− f(0, 0)

h

= lim
h→0

(hu1)
3

(hu1)2+(hu2)2
− 0

h

= lim
h→0

h3u3
1

h3(u2
1 + u2

2)

=
u3
1

u2
1 + u2

2

= u3
1,

the last equality holding since u⃗ is a unit vector. Thus the directional derivative of f(x, y) at (0,0) exists in all
directions. Since Df⃗i(0, 0) = fx(0, 0), fx(0, 0) = 13 = 1. Similarly, fy(0, 0) = Dfj⃗(0, 0) = 0. It follows that

L(x, y) = 1(x− 0) + 0(y − 0) + 0 = x is the expected linear approximation. However,

lim
(x,y)→(0,0)

f(x, y)− L(x, y)√
x2 + y2

= lim
(x,y)→(0,0)

x3

x2+y2 − x√
x2 + y2

= lim
(x,y)→(0,0)

x3−(x3+xy2)

x2+y2√
x2 + y2

= lim
(x,y)→(0,0)

−xy2

(x2 + y2)3/2
.

In order for f(x, y) to be differentiable at (0,0), this limit must be zero. However, if we approach (0,0) along the line

x = −y, the limit becomes 2−3/2 ̸= 0. Thus, f(x, y) is not differentiable at (0,0).

For fx(x, y) and (x, y) ̸= (0, 0), we calculate in the usual way. Thus, fx(x, y) =

{
x4+3x2y2

(x2+y2)2
, if (x, 0) ̸= (0, 0)

1 if (x, y) = 0.

Similarly for fy(x, y) and Du⃗(x, y), so:

fy(x, y) =

{
−2x3y

(x2+y2)2
, if (x, y) ̸= (0, 0)

0, if (x, y) = (0, 0).
and Du⃗(x, y) =

{
x4+3x2y2

(x2+y2)2
· 1√

2
+ −2x3y

(x2+y2)2
· 1√

2
, if (x, y) ̸= (0, 0)

1 · 1√
2
+ 0 · 1√

2
, if (x, y) = (0, 0).

8. Find and classify the critical points for: f(x, y) = 2x2 − 4xy+ y4 +2 and g(x, y) = x3 − 12x+ y3 +3y2 − 9y. Find
the absolute maximum and minimum values of f(x, y) on the square [−1, 1]× [−1, 1].

Solution. For f(x, y), we have

fx = 4x− 4y, fy = −4x+ 4y3, fxx = 4, fxy = −4, fyy = 12y2.
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From fx = 0, we obtain, x = y. Substituting this into the equation fy = 0, yields −4x + 4x3, which has solutions
x = 0, 1,−1. Thus, the critical points for f(x, y) are (0,0), (1,1), (-1,-1).

For (0,0) we have: D(0, 0) = 4 · 0− (−4)2 < 0, so f(x, y) has a saddle point at (0,0).

For (1,1) we have: D(1, 1) = 4 · 12− (−4)2 > 0 and fxx(1, 1) = 4 > 0, so f(x, y) has a relative minimum at (1,1).

For (-1,-1), we have: D(−1,−1) = 4 · 12 − (−4)2 > 0 and fxx(1, 1) = 4 > 0, so f(x, y) has a relative minimum at
(1,1).

Turning to g(x, y), we have:

gx = 3x2 − 12, gy = 3y2 + 6y − 9, gxx = 6x, gxy = 0, gyy = 6y + 6.

From gx = 0, we obtain x = ±2 and from gy = 0 we obtain y = −3, 1. Since the equations gx = 0 and gy = 0 are
independent, we have four critical points (2, -3), (-2,-3), (2,1), (-2,1).

For (2,-3): D(2,−3) = 12 · (−12)− 0 < 0, for g(x, y) has a saddle point at (2,-3).

For (-2,-3): D(−2,−3) = (−12) · (−12) − 0 > 0 and gxx(−2,−3) = −12 < 0, so g(x, y) has a relative maximum at
(-2,-3).

For (2,1): D(2, 1) = 12 · 12 > 0 and gxx(2, 1) = 12 > 0, so g(x, y) has a relative minimum at (2,1).

For (-2,1): D(−2, 1) = −12 · 12 < 0, so (x, y) has a saddle point at (−2, 1).

For the absolute maximum and minimum values of f(x, y) over [−1, 1]× [−1, 1], it is easy to check the critical points
on the boundary occur at the vertices of the square. Thus we check: f(0, 0) = 2; f(1, 1) = 1; f(−1,−1) = 9;
f(−1, 1) = 9; f(1,−1) = 9. Thus, 1 is the absolute minimum and 9 is the absolute maximum we seek.

9. Show that the surface area of a closed rectangular box with volume 27 in3 is smallest when the box takes the
shape of a cube.

Solution. If we let x, y, z denote the lengths of the sides of the box, then the total surface area of the box is
2xy+2xz+2yz. On the other hand, the volume of the box must be 27 in3, which means xyz = 27. If we replace z in
the expression for surface area by 27

xy
, we obtain the function f(x, y) = 2xy+ 54

y
+ 54

x
and we must show that f(x, y)

obtains its minimum value when x = y = z. Since xyz = 27, we must see that x = y = z = 3 gives rise to a minimum
value of f(x, y). We now have fx = 2y − 54

x2 and fy = 2x − 54
y2 . From fx = 0, we obtain y = 27

x2 . If we substitute

this into the equation gy = 0, we obtain (after simplifying) 27x − x4 = 0. From this we get x = 0 and x = 3. We
discard x = 0. Then x = 3. Substituting this into y = 27

x2 , we see y = 3. From 27 = xyz, we get z = 3, as required.
Note that the context guarantees that this give rise to a minimum value, since we may obtain a larger surface area
by taking different values for x, y, z. When x = y = z = 3, the surface area is 108 in2. Now take x = 2, y = 1

2
, z = 27.

Then the surface area becomes 2 + 108 + 27 = 137 in2. Of course, one can verify that the unique critical point is a
minimum by using the second derivative test.

10. Show that the sum of the squares of the distances from a point P = (c, d) to n fixed points (a1, b1), . . . , (an, bn)
is minimized when c is the average of the x-coordinates ai and d is the average of the y-coordinates bi.

Solution. We must minimize the function f(c, d) = (c − a1)
2 + (d − b1)

2 + · · · + (c − an)
2 + (d − bn)

2. Taking the
derivative with respect to c, we must solve

∂f

∂c
= 2(c− a1) + · · ·+ 2(c− an) = 0.

Dividing by 2 and gather the c terms, we have nc− (a1 + · · ·+ an) = 0, and thus c0 = 1
n
· (a1 + · · ·+ an), the average

of the x-coordinates of the given points. An identical calculation shows that the solution to the equation ∂f
∂d

= 0 is

d0 = 1
n
· (b1 + · · · + bn), the average of the y-coordinates of the given points. The critical point found must be a

minimum, since there is clearly no maximum value. To check this using the second derivative test, one can see that
D(c0, d0) = 4n2 > 0 and fcc(c0, d0) = 2n > 0, which confirms that (c0, d0) yields the required minimum.
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